Singularity Analysis Via the Iterated Kernel Method

نویسندگان

  • Stephen Melczer
  • Marni Mishna
چکیده

We provide exact and asymptotic counting formulas for five singular lattice path models in the quarter plane. Furthermore, we prove that these models have a non D-finite generating function. Résumé Nous présentons des résultats énumératives pour les cinq modèles de marches dans le quart de plan dites “singulière”. Nous prouvons que ces modéles sont non-holonome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel

In a recent paper [3], Y. Cao and Y. Xu established the Galerkin method for weakly singular Fredholm integral equations that preserves the singularity of the solution. Their Galerkin method provides a numerical solution that is a linear combination of a certain class of basis functions which includes elements that reflect the singularity of the solution. The purpose of this paper is to extend t...

متن کامل

The Iterated Projection Method for Integro-differential Equations with Cauchy Kernel

In this paper we propose the iterated projection method for the approximate solution of an integro-differential equations with Cauchy kernel in L2([−1, 1],C) using Legendre polynomials. We prove the convergence of the method. A system of linear equations is to be solved. Numerical examples illustrate the theoretical results. AMS Mathematics Subject Classification : 45E05, 35J15.

متن کامل

Face recognition using kernel scatter-difference-based discriminant analysis

There are two fundamental problems with the Fisher linear discriminant analysis for face recognition. One is the singularity problem of the within-class scatter matrix due to small training sample size. The other is that it cannot efficiently describe complex nonlinear variations of face images because of its linear property. In this letter, a kernel scatter-difference-based discriminant analys...

متن کامل

Nonlinear Discriminant Analysis Using Kernel Functions and the Generalized Singular Value Decomposition

Linear Discriminant Analysis (LDA) has been widely used for linear dimension reduction. However, LDA has some limitations that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. In order to overcome the problems caused by the singularity of the scatter matrices, a generalization of LDA based on the generalized singular value...

متن کامل

Acceleration Techniques for Singular Initial Value Problems

The acceleration technique known as Iterated Defect Correction (IDeC) for the numerical solution of singular initial value problems is investigated. IDeC based on the implicit Euler method performs satisfactorily and can thus be used for the eÆcient solution of singular boundary value problems with the shooting method. Higher order one-step methods like the box scheme or the trapezoidal rule ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2014